土壤修复之异位热脱附技术概述 发布时间:2019-09-01 02:35 作者:一二博网  浏览次数:

  热脱附技术(Thermal Desorption)是指在真空条件下或通入载气时,通过直接或间接热交换,将土壤中的有机污染物加热到足够的温度,以使有机污染物从污染介质上得以挥发或分离,进入气体处理系统的过程。

  热脱附可通过调节加热温度和停留时间等方式有选择地将污染物从某一相转化为另一相,在修复过程中并不出现对有机污染物的破坏作用。通过控制热脱附系统的温度和污染土壤停留时间有选择的使污染物得以挥发,并不发生氧化、分解等化学反应。可以有效去除易挥发性的有机物,也可以有效去除半挥发或难挥发性、高沸点、难分解的有机污染物,并且对于含有多种不同沸点的有机污染物可以一次加热处理以达到修复目标值。

  热脱附主要包含两个基本过程:一是加热待处理物质,将目标污染物挥发成气态分离;二是将含有污染物的尾气进行冷凝、收集以及焚烧等处理至达标后排放至大气中。

  原位热脱附技术(In-Situ Thermal Desorption) 是挥发性及半挥发性有机物类污染土壤原位修复技术中一项重要手段,主要用于处理一些比较难开展异位环境修复的区域,例如,深层土壤以及建筑物下面的污染修复。

  原位热脱附技术是将污染土壤加热至目标污染物的沸点以上,通过控制系统温度和物料停留时间有选择地促使污染物气化挥发,使目标污染物与土壤颗粒分离、去除。热脱附过程可以使土壤中的有机化合物挥发和裂解等物理化学变化。当污染物转化为气态之后,其流动性将大大提高,挥发出来的气态产物通过收集和捕获后进行净化处理。

  异位热脱附技术(Ex-Situ Thermal Desorption)则用来处理一些适于开展异位环境修复的区域,将污染土壤提取出来,通过直接或间接加热,将污染土壤中的目标污染物加热至其沸点以上,通过控制系统温度和物料停留时间有选择地促使污染物气化挥发,使目标污染物与土壤颗粒分离、去除。

  2、可处理的污染物类型:挥发及半挥发性有机污染物(如石油烃、农药、多环芳烃、多氯联苯)和汞;

  3、应用限制条件:不适用于无机物污染土壤(汞除外),也不适用于腐蚀性有机物、活性氧化剂和还原剂含量较高的土壤。

  5、土壤分散能力得到改善,土壤结块趋势降低,保证了进料系统的通畅及污染物的热脱附效果;

  8、热脱附系统采用模块化、集成化及智能化的设计,增加了设备的紧凑性,设备占地面积小。

  异位热脱附系统按脱附方式可分为直接热脱附和间接热脱附,也可按温度分为高温热脱附和低温热脱附。

  进料系统:通过筛分、脱水、破碎、磁选等预处理,将污染土壤从前处理车间运送到脱附系统中。

  脱附系统:污染土壤进入热转窑后,与热转窑燃烧器产生的火焰直接接触,被均匀加热至目标污染物气化的温度以上,达到污染物与土壤分离的目的。

  尾气处理系统:富集气化污染物的尾气通过旋风除尘、焚烧、冷却降温、布袋除尘、碱液淋洗等环节去除尾气中的污染物。

  脱附系统:燃烧器产生的火焰均匀加热转窑外部,污染土壤被间接加热至污染物的沸点后,污染物与土壤分离,废气经燃烧直排。

  尾气处理系统:富集气化污染物的尾气通过过滤器、冷凝器、超滤设备等环节去除尾气中的污染物。气体通过冷凝器后可进行油水分离,浓缩、回收有机污染物。

  高温热脱附(High temperature thermal desorption (HTTD))是一种全面的技术(如下图),其将污染土壤加热到560℃,挥发出水和有机污染物。气体输送或真空系统将挥发出的水和有机污染物输送到尾气处理系统。HTTD系统是物理的分离过程并不会破坏有机物。合适的工作温度和气体停留时间会导致选定的污染物挥发但不被氧化(Anderson,1993)。

  HTTD经常结合焚烧、固化/稳定化、脱氯使用,取决于场地的特定条件。该技术已经证明它可以将特定目标污染物的最终浓度水平降至5mg/kg (Khan et al.,2004)。

  主要目标污染物是SVOCs,PAHs,PCBs和农药;然而,HTTD系统对不同程度的有机污染物都有着广谱有效性。也可以处理VOCs和石油类,但处理经济性可能更低。HTTD还可以去除挥发性金属。氯的存在可以影响一些金属的挥发,比如铅。该过程适用于从炼油厂废物,煤焦油废物,木材处理废物,杂酚油污染的土壤,碳氢化合物污染的土壤,混合(放射性和危险的)废物,合成橡胶加工废物和油漆废物中分离有机物。

  LTTD是一种经过验证的全面技术,曾成功地应用于各种土壤中的石油烃污染修复。

  系统中燃烧室单元的污染物的去除效率>95%。同样的设备在必要时稍加修改就可以满足更严格的要求。去除污染后的土壤保留了其物理特性和支持生物活动的能力 (Lighty et al., 1987)。

  两种常见的热脱附设计是旋转干燥器和螺旋加热器。旋转干燥器是可以间接或直接燃烧加热的水平圆柱体。

  干燥器通常倾斜并旋转。对于螺旋加热器单元,螺旋输送机或空心螺旋钻通过密封管渠输送介质。热油或蒸汽循环通过螺旋钻来间接加热介质。

  LTTD的目标污染物是非卤化的VOCs和石油类。该技术可用于降低SVOCs的反应性。限制该技术适用性和有效性的可能因素有:

  - 有特定的来料规格和材料处理要求(可能与特定场地的适用性或成本要求相冲突);

  3、尾气处理系统:旋风除尘器、二燃室、冷却塔、冷凝器、布袋除尘器、淋洗塔、超滤设备等。

  异位热脱附工程看展前,还需要开展前期准备和技术应用基础研究工作,包括且不限于识别土壤污染物的类型、测定污染物浓度,了解场地土壤性质、粒径分布和含水率等参数,同时还需要确定场地及周边信息、待处理土壤体积、项目计划工期和预期目标等。

  此外,还需要考虑是否有足够的空间进行土壤预处理,公用设施(燃料、水、电等)是否满足要求, 以及相关管理部门和当地民众对热脱附技术的接受程度等。

  1、土壤挖掘分选:对地下水位较高的场地,挖掘时需要降水,使土壤含水率降至符合处理要求;

  2、土壤预处理:对挖掘分选后的土壤进行适当的预处理,例如筛分、调节土壤含水率、磁选等;

  3、土壤热脱附处理:根据目标污染物的特性,调节合适的运行参数(脱附温度、停留时间等),使污染物与土壤分离;

  4、尾气处理:收集热脱附过程产生的气体,通过尾气处理系统对气体进行处理,检测达标后排放。

  有机污染物在土壤中的去除过程主要是物理蒸发,脱附分为两个阶段,首先是土壤颗粒表面的快速蒸发,第二阶段蒸发受到颗粒内部扩散的限制。

  沙土:土质疏松,对液体物质的吸附力及保水能力弱,受热易均匀,故易于热脱附。

  且土壤中的晶间水层对于污染物的脱附有明显的抑制作用,粒子内及粒子间的传质显著影响污染物的去除速率。

  水分受热挥发会消耗大量的热量,土壤含水率将直接影响到处理运行成本,高粘土含量或湿度会增加处理费用,因此对污染土壤的含水率有着严格的要求,国外相关工程运行统计数据显示,土壤含水率在5-35%间,所需热量约在117-286kcal/kg,为保证热脱附的效能,进料土壤的含水率宜低于20%。

  如果超过50%的土壤粒径小于200目,细颗粒土壤可能会随气流排出,导致气体处理系统超载。最大土壤粒径不应超过5cm。

  土壤中有机污染物蒸发速率比纯物质的蒸发速率小(如在同等条件下芘的蒸发速率比纯芘的蒸发速率小5倍)。

  有机污染物浓度高会增加土壤热值,可能会导致高温,损害热脱附设备,甚至发生燃烧、爆炸,因此尾气中有机物浓度要低于爆炸下限25%。有机物含量高于1%-3% 的土壤不适用于直接热脱附系统,可采用间接热脱附处理。

  一般情况下,直接热脱附处理土壤的温度范围为150-650℃,间接热脱附处理土壤温度为120-530℃。

  多氯联苯及其它含氯化合物在受到低温热破坏时或者高温热破坏后低温过程易生产二噁英。因此在废气燃烧破坏时还需要特别的急冷装置,使高温气体的温度迅速降低至200℃,防止二噁英的生成。

  温度是影响热脱附过程最主要的因素,随着温度的升高,污染物的脱附效率和降解效率会显著提高,但温度较高时可能会伴随着其他副产物的生成,如热脱附后多氯联苯降解效率可达48%-70%,但是由于PCDFs的生成,毒性当量反而是原始土壤毒性当量的2.8-6.3倍(固相)以及8.0-10.5倍(气相)。

  恰当催化剂的引入可以促进有机污染物的脱附以及降解过程,土壤中本身的矿物质对污染物的去除也有一定的催化作用,土壤中的二氧化硅以及其他矿物质会促进芘的分解以及与土壤中有机物分解产物的反应,飞灰中的C和Cu显著影响二噁英残余浓度。

  一般单台热脱附处理设备的能力在3-200吨/小时之间,直接热脱附设备相对间接热脱附设备的处理能力较大。

  国外对于中小型场地(2万吨以下,约合26800m3)处理成本约为100-300美元/m3,对于大型场地(大于2万吨,约合26800m3)处理成本约为50美元/ m3。根据国内热脱附项目的生产运行统计数据,污染土壤热脱附处置费用约为600-2000元/吨。

  热脱附技术在国外始于七十年代,广泛应用于工程实践,技术较为成熟。自上世纪八十年代以来,包括美国、法国、瑞士、加拿大、阿根廷、韩国、意大利、瑞典等多个国家研究者开展了含挥发性污染物(二甲苯、三氯乙烯等)、PCBs、PAHs(菲、芘等)、二恶英、石油以及十六烷和十碳到二十二碳等多种有机物污染对象进行了热脱附研究。

  异位热脱附作为一种成型的土壤修复技术,广泛应用于多个欧美国家。在1982-2004年期间,约有70 个美国超级基金项目采用异位热脱附作为主要的修复技术。

  自2012来以来,异位热脱附技术在国内得到快速发展,根据环境修复项目数据库的资料统计,在2012年至2016年的114个项目中,有11个项目应用了异位热脱附技术,占比达9.6%。以下为来自北京建工环境修复股份有限公司某未公开项目的概况:

  某两退役化工厂曾大规模生产农药、氯碱、精细化工、高分子材料等近百个品种。经场地调查与风险评估发现,两厂区内土壤及厂区毗邻河道底泥均受到以VOCs 和SVOCs 为主的复合有机污染,开发前需要进行修复。

  主要污染物为卤代VOCs、BTEX、有机磷农药、多环芳烃等。其中二甲苯最高浓度为2344mg/kg,修复目标值为6.99mg/kg;毒死蜱最高浓度29600mg/kg,修复目标值为46 mg/kg。

  现场调查结果显示,污染土壤主要为粉土、淤泥质粉质粘土和粉砂,含水率25%-35%。

  综合以上污染物特性、污染物浓度、土壤特征以及项目开发建设需求,异位热脱附技术对污染物的去除效率可达99.99%,适合处理本项目中VOCs、SVOCs 的复合污染土壤。

  1)污染土壤进料阶段:将污染土壤转运至贮存车间内的预处理区域,粒径小于50mm的土块直接被送入回转窑,超规格的土块经过破碎后再次返回振荡筛进行筛分。

  2)回转窑加热阶段:将污染土壤均匀加热到设定的温度(300~500℃),并按照设定速率向窑尾输送,在此期间土壤中的污染物充分气化挥发。

  3)尾气处理阶段:尾气处理系统包括二燃室、急冷塔、布袋除尘器和酸性气体洗涤塔等。烟囱上装有烟气实时在线监测装置,经过处理后的尾气达标排放。

  本项目实际工程中热脱附部分费用包括:人工费、挖运费、设备折旧、设备运输和安装/拆除费、燃料费、动力费、检修及维护费等,约为1000元/m3。

  自1985年美国EPA首次将该技术采纳为一项可行的土壤环境修复技术起即被广泛应用于国外处理挥发性和半挥发性有机污染物的土壤、污泥、沉淀物、滤渣等污染场地的修复。另外,热脱附技术对于处理一些突发性的有机污染环境事故,如由于意外泄露、倾倒而发生的突发性土壤污染事故的应急修复也是一种不错的技术方案。

  作为一种物理修复方法,热脱附技术具有污染物处理范围宽、处理速率高、设备可移动、修复后土壤可再利用等优点,特别适合重污染的土壤区域,包括高浓度、非水相的、游离的以及源头的有机污染物,且对于PCBs这类含氯有机物,非氧化燃烧的处理方式可以显著减少二噁英的生成。

  热脱附技术可用于处理的污染物主要为含氯有机物(CVOCs),半挥发性有机物(SVOCs),石油烃类(TPH),多环芳烃(PAHs),多氯联苯(PCBs)以及农药等。不过,热脱附技术并不适于有机防腐剂以及活性氧化剂还原剂污染土壤的修复。

  目前,热脱附技术在石化工厂、地下油库、木料加工厂和农药库房等区域以及在一些污染物源头修复治理工作中广泛应用。

  相比于国外,我国热脱附修复污染土壤研究处于起步和逐步推广应用阶段,浙江大学,清华大学,中国科学院,南京农业大学,西北科技农林大学等多家单位在热脱附方面已进行了一系列研究。新的研究进展主要有:

  1、 温度和时间是影响热脱附过程最主要的因素,停留时间的影响受温度限制;

  2、 土壤成分主要是土壤中有机质含量以及二氧化硅和其他矿物质会对热脱附过程的影响,有机质对不同的有机物都有一定的相关性,但是不同的物质之间有一定的差异,二氧化硅和其他矿物质可促进污染物的脱附及降解;

  4、 获得了一些因素如土壤中污染物的初始浓度、土壤的含水率、载气流量、载气的种类、升温速率以及气氛含氧量,对热脱附过程的定量影响规律。

  目前我国热脱附修复污染土壤应用近年来得到了快速发展,但尚存在着以下问题:

  2、 对不同污染物的认识不够,不当的参数组合会导致其他副产物的产生,特别是含氯有机物的处理过程中会产生二噁英;

  3、 土壤修复工程的噪音和扬尘、粉尘污染等新污染源控制难。返回搜狐,查看更多

      一二博网,一二博网在线,一二博网开户